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Abstract We examine departmental grade distributions

for the school years 1985–1986, 1995–1996, and

2004–2005 at Southeast Missouri State University. Mean

undergraduate grade point averages (GPAs) increased from

2.6 in 1985–1986 to 3.1 in 2004–2005. Although higher

student GPAs might be evidence of grade inflation, uni-

versity departments might have experienced productivity

improvements that enhanced student learning, given inputs.

We represent the technology by the directional distance

function. Departments produce two outputs-grade points

earned by students and the information content of those

grades-using faculty and student inputs. The entropy index

is used to proxy the information content of grade distri-

butions. The estimates indicate; no systematic changes in

inefficiency over time; a movement along the production

frontier toward a mix of outputs with relative more grade

points and less entropy; a shift toward non-tenure track

faculty that increases the shadow price of entropy relative

to grade points.

Keywords Efficiency � Productivity � Grade inflation

JEL Classification D24 � I23

Rising average grades assigned by university professors

have been attributed to grade inflation by some (Mansfield

2001; Johnson 2003), but have been defended by others

(Kohn 2002) as an outcome of good teaching, a more

accurate teacher assessment of student abilities, and a

reduced higher educational focus on sorting students. Of

course, the classic paper by Spence (1973) showed that

students invest in human capital to sort, screen, and reveal

their abilities to employers who face imperfect information

on potential employees’ marginal products. In an expan-

sion of this idea, Stiglitz (1975) argues that the function of

educational institutions is to impart knowledge and sort

students into their areas of comparative advantage. How-

ever, Stiglitz also writes that ‘‘(t)he school system can

decide on the fineness or coarseness of screening.’’ (p. 294)

Although a coarser screen need not entail grade inflation,

rising average grades might be part of an implicit decision

on the part of university faculties to have a coarser screen.

In this paper we examine the changing grade distribu-

tions of university departments at a regional public uni-

versity, Southeast Missouri State University, from 1985 to

2005. With a four point grading scale the highest grade of

A earns 4 points, a grade of B earns 3 points, a grade of C

earns 2 points, a grade of D earns 1 point and a failing

grade earns 0 points. The number of grade points a student

can earn equals the sum over all classes of grade points

multiplied by credit hours. A student’s GPA (grade point

average) equals total grade points divided by total credit

hours. At Southeast Missouri State University GPAs

increased from 2.6 in 1985–1986 to 3.1 in 2004–2005. We

build a model where each department combines student

and faculty inputs to produce a grade distribution. We

proxy the knowledge component of the education process

by the number of grade points students receive in the

department and we use Shannon’s (1948) entropy index to

proxy the fineness of the screen provided by education. If

students have varying interests and abilities a higher value
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of the entropy index provides information to students on

their comparative advantage, information to potential

employers who might find it less costly to identify high

ability students, and information to graduate schools in

determining admission and scholarships. We estimate a

stochastic directional output distance function to measure

department inefficiency for the school years of 1985–1986,

1995–1996, and 2004–2005.

After lackluster labor productivity growth in the late

1970s and 1980s, labor productivity in the US business

sector grew at a relatively rapid rate throughout the 1990s

until the present. (2005 Economic Report of the President

Table B-50) If universities have experienced similar rates

of productivity growth in educating students, that produc-

tivity growth might be reflected in rising student GPAs.

However, as Baumol (1967) eloquently argues, there are

some services, teaching for one, ‘‘in which labor is an end

in itself, in which quality is judged directly in terms of

amount of labor.’’ (p. 416) Baumol’s theory of unbalanced

productivity growth between two sectors predicts that if the

demand for the service produced by the slow growth sector

is price inelastic and income elastic, a cost disease occurs,

where the slow growth sector absorbs an increasing share

of income. According to the College Board and reported by

Kleiner (2004), tuition at 4 years public schools grew by

308% between 1984 and 2004 while real per capita income

grew by only 138%. (2005 Economic Report of the Pres-

ident Table B-31) Are these figures for higher education

evidence of Baumol’s cost disease, or, are the higher

expenditures consistent with enhanced outcomes? Univer-

sities might have been able to raise productivity with

departments producing more output with less input due to

technological progress or greater efficiency.

The directional output distance function is an effective

way of modeling a multi-output, multi-input production

technology and allows us to address several important

questions: What is the level of departmental inefficiency?

Are higher observed grades in 2004–2005 the result of

productivity growth or evidence of grade inflation? Has

the frontier tradeoff between grades points earned and the

information content of those grades changed during the

20 years period? What effect does achieving program

accreditation have on department efficiency? The last two

decades have seen many universities attempt to control

costs by substituting non-tenure track faculty for tenure

track faculty. Is the changing mix of faculty inputs

responsible for rising grades? In the next section we review

the literature on the causes and consequences of grade

inflation. We present our model of the educational pro-

duction process in Sect. 2. In Sect. 3 we discuss the data

and present our estimates of efficiency and productivity

growth for university departments. The final section offers

a summary of our work and its policy implications.

1 Grade inflation

A number of factors have been cited as causing grade

inflation. Declining state appropriations for higher educa-

tion has meant higher tuition. As consumers of higher

education, students and parents might expect higher grades

as compensation for paying higher tuition. To alleviate

higher costs, many universities have increased their use of

part-time faculty in the classroom. These faculty members

tend to be evaluated primarily on their teaching and thus

might have an incentive to try and boost student ratings via

higher grades (Capozza 1973; Zangenehzadeh 1988).

Johnson (2003) finds that grading differences across dis-

ciplines divert students and resources away from hard

grading disciplines toward easy grading ones. Based on

17,000 matched comparisons of the same student in two

different courses at Duke University, Johnson finds that

chemistry, physics, mathematics, biology, and economics

were the departments most penalized as students were

twice as likely to take a course from a professor who

assigned a mean grade of A- versus B. Sabot and

Wakeman-Linn (1991) identify hard grading and easy

grading disciplines at Williams College and seven other

colleges and find that male students were 18.2% less likely

to take a second course in economics if they received a B

rather than an A in the introductory course. Bar et al.

(2009) provide further evidence of students selecting easy

grading courses. In 1998, Cornell University began an on-

line median grade report for each class to provide students

with a more accurate idea of their performance. In an

analysis of this policy change these researchers find that

while the share of courses offering a median grade in the A

range was relatively stable, the share of students enrolled in

those courses increased after 1998.

At most universities the cost per credit hour is the same

for each course, with certain add-ons for laboratory and

technology fees. Freeman (1999) argues that ‘‘given equal

money prices per credit hour across disciplines, depart-

ments manage their enrollments by ‘pricing’ their courses

with grading standards commensurate with the market

benefits of their courses, as measured by expected

incomes.’’ (p. 344) Using data from the National Center for

Education Statistics on 10,800 students from 648 institu-

tions and 59 fields of study, Freeman finds evidence sup-

porting his hypothesis: disciplines where students expect to

earn higher incomes have lower GPAs.

When inflationary expectations are fully realized and

relative prices remain constant, there are no costs of price

inflation. However, most price inflations are not fully

anticipated and are accompanied by changing relative

prices between goods which redistribute income and real-

locate resources. The same might be true for grade infla-

tion. A grading scale that assigns five ranks of A through F
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to student grades is no better or worse than a five rank scale

of A, A-, B?, B, and B- as long as all users of the grade

distribution understand the equivalence of the two ranking

schemes. However, while prices can rise without limit, a

given grading scale has an upper bound so that grade

inflation compresses grades and lowers the information

content of those grades. Achen and Courant (2009) find

evidence of grade inflation for disciplines in the University

of Michigan’s College of Literature, Science, and the Arts

from 1992 to 2008, but very little change in the relative

rankings of hard grading and easy grading disciplines.

There is growing evidence that average grades at uni-

versities have been increasing by about 0.15 grade points

per decade for the last 35 years (GradeInflation.com 2005).

Moreover, as Johnson (2003) finds for Duke University,

grade inflation has also been accompanied by changes in

the exchange rate or relative difficulty of courses across

disciplines. In a signaling model, Chan et al. (2007) find

that grade inflation can arise when employers are unable to

distinguish between schools that have good students and

schools that give easy grades. Since elite schools are more

likely to have good students, employers treat grade infla-

tion by these schools with less skepticism. However, the

authors also show that when one school can exaggerate

grades, other schools find it easier to inflate grades in order

to fool the market. Thus, grade inflation becomes conta-

gious and the information content of grades is reduced in a

tragedy of the commons. Babcock (2010) finds that stu-

dents study 50% less when taking a class where the

expected grade is A versus a class where the expected

grade is C. To the extent that university classes add to a

student’s human capital and are not just a method of sig-

naling, a consequence of reduced study time will be

reduced productivity. Given that the university we study is

not an elite institution; the effects of grade inflation may be

borne by high ability students as grades are compressed.

Furthermore, the findings of Babcock suggest that other

lower ability students will acquire less human capital.

To counter grade inflation Johnson proposes that addi-

tional information be provided on college transcripts about

the average GPA per course so that students who take hard

courses and earn less than an A grade can have their grade

compared to the average grade received by the class.

However, Ostrovsky and Schwarz (2003) argue that if

universities can choose how informative to make tran-

scripts, some universities might find it optimal to lump

high-performing and low-performing students together

with a coarser grading system. In their model, if universi-

ties disclose greater information an ‘‘unraveling’’ occurs

where students and employers engage in early contracting.

In addition, to the extent that some jobs entail high rents,

informative transcripts that signal high ability students

might reduce welfare.

2 Method

Because of the importance of scientific knowledge to

productivity growth found by Adams (1990), various

researchers have examined university efficiency in the

production of knowledge outputs. In these studies the

typical teaching outputs include full-time undergraduate

and graduate students and research outputs include

research grant dollars, number of publications, and ranks of

research quality. Cost functions have been used to examine

scale and scope economies by Cohn et al. (1989) for 1,887

US universities operating in 1981–1982, by deGroot et al.

(1991) for 147 doctoral granting universities in 1982–1983,

and by Glass et al. (1995) for 61 UK universities in 1989.

In general, these studies find scale economies in the pro-

duction of teaching and research and some scope econo-

mies for US, but not UK universities. Glass et al. (1998)

use data envelopment analysis to estimate cost indirect

distance functions and productivity indexes for UK uni-

versities during 1989–1992. During the study period,

government policy aimed to improve productivity in

teaching and research, but productivity declined by 4%,

primarily due to biased technological change with the

production frontier shifting out for teaching outputs, but

inward for research outputs.

Although the traditional teaching outputs are full-time

students, we model university departments as producers of a

grade distribution to examine the knowledge output and the

information screening output. The knowledge component of

education is reflected in the number of grade points gen-

erated by the department. We measure the screening output

or information content of those grade points by Shannon’s

entropy index. The number of departmental grade points

equals the product of average departmental GPA, students,

and class hours. For instance, a department that has a GPA

of 3.0 on a 4 point scale with 500 students each completing

three hours of credit would generate 4,500 grade points.

Each department uses student and faculty inputs to produce

the two outputs. Let the N inputs of department k be rep-

resented by xk ¼ ðxk
1; . . .; xk

NÞ and let the M outputs of

department k be represented by yk ¼ ðyk
1; . . .; yk

MÞ. The

k = 1, … ,K departments face a common technology,

represented by the production possibility set, P(x), where

PðxÞ ¼ fy : y can be produced by xg. For our purpose we

have M = 2 where y1 = departmental grade points and

y2 = Shannon’s entropy index. Student grades are assigned

into one of five categories, A, B, C, D, and F and the pro-

portion of grades in each category is wi. Shannon’s entropy

index takes the form: E ¼ �
P5

i¼1 wi lnðwiÞ. When all stu-

dents receive the same grade, the information content of the

grade distribution is low and E = 0. The entropy index

takes its maximum value when equal proportions of
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students are in each of the five categories:

E ¼ �5 � ð0:2Þðlnð0:2ÞÞ ¼ 1:61. To our knowledge the

entropy index has not been used as an output in studies

examining the efficiency of educational institutions. We

assume that the entropy index is a proxy indicator for group

heterogeneity and the screening function of universities.

While screening by educational institutions may increase

income inequality, Stiglitz (1975) writes that ‘‘attempts to

curtail educational screening may simply shift the focus of

screening (for example, to on-the-job screening), with the

possibility of lowering net national output without any

commensurate gain in equality.’’ (p. 299)

The properties of the production possibility set (Färe and

Primont (1995) are:

i: 0M 2 PðxÞ for all x 2 RN
þ

ii: Pð0Þ ¼ 0M

iii: if x0 � x; then Pðx0Þ � PðxÞ
iv: if y 2 PðxÞ then hy 2 PðxÞ for 0� h� 1

v: for all x 2 RN
þ; PðxÞ is a closed and bounded set:

ð1Þ

In order, these properties mean that inaction is possible;

no output can be produced if no input is available; inputs

are strongly disposable; output is weakly disposable; and

finite amounts of input can only produce finite amounts of

output. An additional assumption that is sometimes

imposed is strong disposability of outputs which means

that if y 2 PðxÞ and y0 � y, then y0 2 PðxÞ. Although P(x)

set might satisfy strong disposability of outputs, we do not

require this assumption for our analysis.

We use the directional output distance function as a

functional representation of the technology and as a measure

of departmental inefficiency. For the directional vector g ¼
ðg1; . . .; gMÞ the directional output distance function seeks

the maximum simultaneous expansion of all outputs for the

g-directional vector. This distance function takes the form:

D~oðx; y; gÞ ¼ maxfb : ðyþ bgÞ 2 PðxÞg: ð2Þ

When departments produce on the frontier of P(x) they are

efficient with D~oðx; y; gÞ ¼ 0. Inefficiency is indicated by

D~oðx; y; gÞ[ 0. Each of the two outputs are scaled to the

frontier along the directional vector g = (g1, g2). Different

directional vectors can be chosen. For the unit directional

vector, g = (1, 1), the directional output distance function

gives the maximum simultaneous expansion in grade

points and the entropy index that is feasible given inputs.

For a directional vector g = (1, 0) the distance function

gives the maximum feasible expansion in grade points

holding entropy constant. For a directional vector g = (0,

1) the distance function gives the maximum feasible

expansion in entropy holding grade points constant.

For a directional vector g = (y1, y2) the distance func-

tion gives the simultaneous percentage expansion in the

two outputs. In such a case, the directional output distance

function can be recovered from the Shephard output dis-

tance function as

D~oðx; y; yÞ ¼ 1

Doðx; yÞ
� 1; ð3Þ

where Doðx; yÞ ¼ minfk : y
k 2 PðxÞg is the Shephard output

distance function. The Shephard output distance function

can be estimated as a translog form.

The directional output distance function has been

adapted for production theory by Chambers et al. (1996)

who derived it from Luenberger’s (1992) benefit function.

The properties of the directional distance function are

inherited from the output sets, PðxÞ; x 2 RN
þ. One property

is that the directional output distance function provides

a complete functional characterization of the technology

in that

y 2 PðxÞ if and only if D~oðx; y; gÞ� 0: ð4Þ

The directional output distance function also has the

translation property:

D~oðx; yþ /g; gÞ ¼ D~oðx; y; gÞ � /; ð5Þ

which implies that if outputs are scaled by /g, the

directional output distance function (inefficiency) declines

by /. Strong disposability of inputs is represented by

D~oðx0; y; gÞ�D~oðx; y; gÞ for x0 � x ð6Þ

and weak disposability of outputs is represented by

if D~oðx; y; gÞ� 0 then D~oðx; hy; gÞ� 0 for 0� h� 1: ð7Þ

We use the directional output distance function to

estimate the frontier tradeoff between the two departmental

outputs of grade points and the entropy index. Assuming

differentiability of D~oðx; y; gÞ, let dym

dym0
indicate the frontier

tradeoff between outputs m and m0. Taking the total

differential of Eq. 2 and evaluating it on the frontier (that

is, for D~oðx; y; gÞ = 0) we obtain

dD~oðx;y;gÞ ¼
XN

n¼1

oD~oðx;y;gÞ
oxn

dxnþ
XM

m¼1

oD~oðx;y;gÞ
oym

dym ¼ 0

ð8Þ

Holding dxn ¼ 0; n¼ 1; . . .;N so that P(x) is constant, a

rearrangement of (8) yields

dym

dym0
¼ � oD~oðx; y; gÞ=oym0

oD~oðx; y; gÞ=oym

; ð9Þ

which is the marginal rate of transformation or shadow

price ratio between the two outputs. The sign of the
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tradeoff in (9) depends on the signs of the two partial

derivatives. A common assumption in production theory is

strong disposability of outputs or output monotonicity,

which implies that if y0 � y 2 PðxÞ, then D~oðx; y0; gÞ�
D~oðx; y; gÞ. That is, decreases in output do not increase

efficiency. If output monotonicity holds, then the two

partial derivatives are non-positive and the production

possibility frontier has a negative slope. As mentioned

before, we only require that outputs are weakly disposable

which allows for the possibility that the production possi-

bility frontier might be positively sloped over some range.

The translog functional form has been widely used to

estimate stochastic Shephard input distance functions by

Atkinson et al. (2003a, b), and Atkinson and Dorfman

(2005a, b), and to estimate stochastic output distance func-

tions by Grosskopf et al. (1997), Paul et al. (2000), and

Balcombe et al. (2007). Chambers (1998) suggests a qua-

dratic form as a flexible approximation for directional dis-

tance functions. The quadratic form provides a second-order

approximation to the true but unknown distance function and

can be restricted in accordance with the translation property.

In contrast, Shephard distance functions have a homogeneity

property that can be restricted within the translog form, but

the translog form cannot be restricted to satisfy the transla-

tion property. We choose a common directional vector,

g = (1,1), for all departments so that the directional vector

does not have to be part of the specification. In addition, a

common directional vector allows for the aggregation of

departmental technical inefficiency to a university technical

inefficiency indicator (Färe and Grosskopf 2004).

Efficient departments produce on the frontier with

0 ¼ D~oðxkt; ykt; 1; 1Þ. Because we use a quadratic approxi-

mation to the true but unknown directional distance function

and to allow for the existence of technical inefficiency we

introduce a two component error term, ekt ¼ mkt � lkt, where

mkt represents the noise component which is assumed to be iid

with zero mean and lkt is a one-sided iid error term repre-

senting technical inefficiency. Let QD~oðxkt; ykt; 1; 1Þ repre-

sent the quadratic approximation to the true directional

distance function. Accounting for inefficiency and noise

yields 0 ¼ QD~oðxkt; ykt; 1; 1Þ þ mkt � lkt. In the period we

examine, the number of accredited programs increased from

five to thirteen. We control for this quality attribute using a

binary indicator variable, ACkt, which takes a value of one if

an accredited program resided in department k in period t and

zero otherwise. Data on departmental research output are

available for only some departments for the most

recent period. We argue that the accreditation variable par-

tially controls for departmental research output since most

accreditation certifications require some research. Substi-

tuting the quadratic form for the true but unknown direc-

tional output distance function yields:

0 ¼ ao þ
XN

n¼1

anxkt
n þ

1

2

XN

n¼1

XN

n0¼1

ann0x
kt
n xkt

n0

þ
XM

m¼1

bmykt
m þ

1

2

XM

m¼1

XM

m0¼1

bmm0y
kt
mykt

m0

þ
XN

n¼1

XM

m¼1

dnmxkt
n ykt

m þ h � ACkt þ ekt: ð10Þ

Symmetry of the cross input and output effects implies ann0 ¼
an0n; n 6¼ n0 and bmm0 ¼ bm0m; m 6¼ m0. The translation

property implies QD~oðxkt; ykt; 1; 1Þ ¼ QD~oðxkt; ykt þ /kt�
1Þ þ /kt. For the quadratic form the translation property

requires that
PM

m¼1 bm ¼ �1;
PM

m bmm0 ¼ 0; m ¼ 1; . . .;M;

and
PM

m¼1 dnm ¼ 0; n ¼ 1; . . .;N. Using the translation

property and rearranging (10) yields

�/kt ¼ ao þ
XN

n¼1

anxkt
n þ

1

2

XN

n¼1

XN

n0¼1

ann0x
kt
n xkt

n0

þ
XM

m¼1

bmðykt
m þ /kt � 1Þ

þ 1

2

XM

m¼1

XM

m0¼1

bmm0 ðykt
m þ /kt � 1Þðykt

m0 þ /kt � 1Þ

þ
XN

n¼1

XM

m¼1

dnmxkt
n ðykt

m þ /kt � 1Þ þ h � ACkt þ ekt:

ð11Þ

We estimate the inefficiency component in two ways. First,

we follow Atkinson et al. (2003a) who estimated an input

distance function using the approach of Cornwell et al.

(1990). Since the outputs and inputs might be endogenous

we estimate (11) using the generalized method of moments.

We assume that the lkt can be modeled using a fixed–

effects approach for time varying inefficiency:

lkt ¼
XK

k¼1

X0k � DEPTk þ X1 � t þ X2 � t2 � mkt; ð12Þ

where DEPTk is an indicator variable for departments, t is a

time trend, and mkt is the noise component of ekt. The

coefficients X0k capture time invariant, department specific

differences in the technology and the coefficients X1 and

X2 capture the time varying differences in the technology

that are common to all departments. We estimate Eq. 12 in

a second stage regression. Second, we estimate (11) and

(12) simultaneously using maximum likelihood methods

following Battese and Coelli (1995) and Coelli et al.

(1998).

In a recent innovative paper O’Donnell (2007) estimates

the parameters of a directional output distance function

using Bayesian methods. However, his method does not
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impose the translation property which is necessary for

using the directional output distance function to estimate

shadow price ratios. In the next section, we explain our

choice of /kt and the inputs and outputs for our model.

3 Empirical results

Our data constitute an unbalanced panel of departments at

Southeast Missouri State University for three periods

extending over two decades. The university was estab-

lished by statute in 1873 as the ‘‘Third District Normal

School’’ with a mission of educating teachers for public

schools in the region. The university service region

includes 24 Missouri counties extending from St. Louis

County in the north to the Boot-heel of Missouri in the

south. Today, the mission of the university is to provide

student centered education in the liberal arts and sciences

and provide experiential learning. Some discipline specific

research occurs, but most grant monies received are for

providing service activities to the region such as older adult

education and nutrition services, small-business planning

and advisement, economic development, and early child-

hood health awareness programs.

Courses in each of the seven colleges (Business, Liberal

Arts, Science and Mathematics, Education, Health and

Human Services, University Studies, and Polytechnic

Studies) not affiliated with their respective college

departments are treated as a departmental unit. For the

school year 1985–1986 there were complete data on inputs

and outputs for 33 departments. During 1995–1996, 39

departments had complete data and 33 departments had

complete data for 2004–2005. We assume that departments

produce grade points (y1) and screening or information

content on the grade distribution (y2) measured by the

entropy index. Data on departmental research output at this

predominantly teaching institution are only available for

departments in some of the seven colleges for the most

recent year. We partially control for research output by

including an indicator variable for departments that have an

accredited program or reside in a college that is accredited.

A department that teaches twenty-five classes of three

credits with an average class size of thirty with students

receiving an average GPA of 3.0 would have y1 = 6,750.

Departments use inputs of undergraduate classes taught by

non-tenure track faculty (x1), undergraduate classes taught

by tenure track faculty (x2), graduate student classes (x3),

and student credit hours measured at the end of the fourth

week of the semester (x4). Substitution between the various

inputs occurs as some departments, like Music, offer

numerous 1 h classes but use relatively few student credit

hours. Other departments offer fewer classes that have

large numbers of students.1 The number of student credit

hours at the end of week four is almost always greater than

the number of student credit hours earned at the end of the

semester since students drop classes between week four

and the end of the semester.

Descriptive statistics are presented in Table 1. From

1985–1986 to 1995–1996 the number of undergraduate

classes taught by tenure track faculty relative to non-tenure

track faculty increased. The mix changed toward non-ten-

ure track faculty from 1995–1996 to 2004–2005. The

number of graduate classes offered per department

increased by about three from 1985–1986 to 1995–1996

and then increased by thirteen from 1995–1996 to 2004–

2005. During the 20 years period there is clear evidence of

higher grades and less information content in the grade

distribution. While the number of class hours attempted by

students at the end of the fourth week of the semester

declined by more than 1,000 per department, the number of

grade points awarded per department increased by 1,300

and the entropy index declined from 1.37 in 1985–1986 to

1.15 in 2004–2005. The university experienced a decline in

enrollment from 1985–1986 to 1995–1996 that is evident

in the number of class hours attempted by students and in

the total number of grade points. The overall university

grade point average increased from 2.6 in 1985–1986, to

2.9 in 1995–1996, to 3.1 in 2004–2005. The university

wide entropy index was equal to 1.43 in 1985–1986, 1.36

in 1995–1995, and 1.26 in 2004–2005. No data were

available to control for student quality at the department

level. However, the average ACT score of first-time, full-

time students at the university in 1995 was 22.6 (s = 3.76,

N = 1,331 students) and was 22.4 (s = 3.63, N = 1,346

students) in 2004–2005, so there is no evidence of a change

in student quality.

We normalize departmental inputs and outputs by

dividing by the mean value of the respective inputs and

outputs. Thus, an average department uses inputs

x = (1,1,1,1) to produce outputs y = (1,1). To impose the

translation property we let /kt ¼ �ykt
2 for each observation.

We estimate the directional distance function in two ways.

First, we control for potential endogeneity between the

outputs and inputs and estimate (11) using the generalized

method of moments (GMM). Second, we estimate the

1 Using department grade points as an output might introduce

aggregation bias within a department as lower level and upper level

courses are treated equally. Aggregation bias might also arise when

comparing departments that primarily teach lower level general

education courses and departments that primarily teach upper level

courses offered to majors, or between departments where test

questions have right and wrong answers versus departments where

test questions are ambiguous and the cost to the professor of

defending assigned grades is high (Achen and Courant 2009).
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directional output distance function using the stochastic

frontier approach described in Coelli et al. (1998).2

Roodman (2009) finds evidence that when a large

number of instruments are used in the GMM, equations for

endogenous variables may be over-fit and the Hansen test

for over-identifying restrictions is weakened. Four different

instrument vectors are used and described in Table 2 along

with the Hansen J statistic. We follow Atkinson et al.

(2003a) and report the estimates for the set of instruments

that gives the lowest test statistic for the null hypothesis

that the over-identifying restrictions are valid. The smallest

J statistic (highest p value) is for the instrument vector that

consists of dummy variables for each department, time

dummy variables, and the accreditation dummy variable.

Given forty-six departments, three periods (one time indi-

cator is dropped), and the accreditation variable we have 49

instrumental variables to estimate the 22 coefficients of the

directional output distance function. The Hansen J statistic

of the null hypothesis that the over-identifying restrictions

are satisfied has a X2 distribution with degrees of freedom

equal to the number of over-identifying restrictions.

Table 1 Descriptive statistics

Variable Symbol Mean Std. Dev. Minimum Maximum

1985–1986 (K = 33)a

Undergrad classes taught by non-tenure track faculty x1 38.8 40.9 0 139

Undergrad classes taught by tenure track faculty x2 83.9 97.3 0 555

Grad classes offered x3 18.2 22.5 0 87

Weekly 4 h x4 7,012.5 4,556.0 445 19,534

Grade points y1 15,759.2 10,087.8 589 40,115

Entropy y2 1.37 0.14 1.02 1.54

1995–1996 (K = 39)

Undergrad classes taught by non-tenure track faculty x1 26.0 47.2 0 252

Undergrad classes taught by tenure track faculty x2 82.6 100.4 3 630

Grad classes offered x3 21.7 46.6 0 268

Weekly 4 h x4 4,689.2 3,709.4 79 17,029

Grade points y1 11,563.6 9,371.2 161 46,890

Entropy y2 1.23 0.28 0.53 1.53

2004–2005 (K = 33)

Undergrad classes taught by non-tenure track faculty x1 50.4 62.4 0 235

Undergrad classes taught by tenure x2 86.9 83.2 6 478

Grad classes offered x3 34.8 59.5 0 253

Weekly 4 h x4 6,334.2 4,667.9 100 20,125

Grade points y1 17,059.2 12,711.7 180 59,559

Entropy y2 1.15 0.33 0.22 1.52

All years (K = 105)

Undergrad classes taught by non-tenure track faculty x1 37.7 51.3 0 252

Undergrad classes taught by tenure track faculty x2 84.4 93.5 0 630

Grad classes offered x3 24.7 45.7 0 268

Weekly 4 h x4 5,936.4 4,372.8 79 20,125

Grade points y1 14,609.4 10,905.1 161 59,559

Entropy y2 1.25 0.28 0.22 1.54

a K = number of departments

Table 2 Hansen test for overidentifying restrictions

Instrumentsa Number of

instruments

J statistic p value

Dept., t1, t2, AC, 49 13.92 0.98

Dept. t1, t2, AC, xn, xn
2, xnxj 63 25.83 0.97

Dept., t1, t2, AC, y1, y1
2 51 16.44 0.97

Dept. t1, t2, AC, xn, xn
2, xnxj,

y1, y1
2, xny1

69 31.02 0.96

a Dept. = department indicator variables, AC = indicator variable if

department is accredited, t1 = indicator for 1985–1986, t2 = indica-

tor for 1995–1996

2 Estimates using the stochastic frontier approach are from the

program Frontier 4.1 of Tim Coelli.
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The smallest estimated J statistic is 13.9 with 27 degrees of

freedom. Given a critical X2(a = .05) = 41.1 we cannot

reject the null hypothesis. In Tables 3 and 4 we report

coefficient estimates for the quadratic form and the ineffi-

ciency component of the error term.

To compute technical inefficiency using GMM we cal-

culate the negative of the residuals, �êkt, from Eq. 11 and

regress �êkt on the right-hand side of (12) to obtain esti-

mates of l̂kt. Define l̂ ¼ mink;tfl̂ktg. Adding and sub-

tracting û to the fitted model (11) yields

�/̂kt ¼ Q
^
D~oðxkt; ykt þ /kt � 1; 1; 1Þ þ v̂kt � l̂kt þ l̂� l̂

�/̂kt ¼ Q
^
D~
�
oðxkt; ykt þ /kt � 1; 1; 1Þ þ v̂kt � l̂kt� ð13Þ

where Q
^
D~
�
oðxkt; ykt þ /kt � 1; 1; 1Þ ¼ Q

^
D~oðxkt; ykt þ /kt �

1; 1; 1Þ � l̂ is the estimated frontier distance function and

l̂kt� ¼ l̂kt � l̂ is the non-negative estimate of technical

Table 3 Parameter estimates of the directional output distance

function

Parameter Variable GMMa Stochastic frontierb

Estimate (std. error) Estimate (std. error)

a0 Constant 0.367 (0.080)** 0.924 (.050)**

a1 x1 0.040 (0.066) -0.019 (.029)

a2 x2 -0.344 (0.126)** -0.179 (.052)**

a3 x3 -0.036 (0.051) -0.037 (.040)

a4 x4 1.190 (0.080)** 0.369 (.064)**

a11 x2
1

-0.034 (0.019)* 0.034 (.010)**

a12 = a21 x1x2 -0.107 (0.053)** 0.043 (.010)**

a13 = a31 x1x3 0.084 (0.030)** -0.036 (.009)**

a14 = a41 x1x4 0.079 (0.056) -0.019 (.028)

a22 x2
2

0.145 (0.094) -0.068 (.016)**

a23 = a32 x2x3 -0.061 (0.036)* 0.028 (.011)**

a24 = a42 x2x4 0.407 (0.118)** 0.146 (.051)**

a33 x2
3

0.018 (0.016) -0.003 (.007)

a34 = a43 x3x4 -0.080 (0.051) 0.027 (039)

a44 x2
4

-1.059 (0.118)** -0.245 (.055)**

b1 = -1-

b2

y1 -0.707 (0.133)** -0.047 (.077)

b11 = -b12 y2
1

-0.295 (0.125)** 0.193 (.100)*

d11 = -d12 x1y1 -0.005 (0.047) -0.033 (.031)

d21 = -d22 x2y1 -0.206 (0.119)* -0.248 (.041)**

d31 = -d32 x3y1 -0.020 (0.056) -0.012 (.026)

d41 = -d42 x4y1 0.460 (0.067)** 0.094 (.061)

h ACt -0.027 (0.009)** -0.034 (.015)**

r2 0.006 (.001)**

c 0.968 (.015)**

* p B .10

** p B .05
a Generalized method of moments estimates
b Estimated with Frontier 4.1 of Tim Coelli

Table 4 Inefficiency equation estimates

GMM Stochastic

Coef. Std.

Err.

Coef. Std.

Err.

Time trends

T -0.032 0.196 0.049 0.069

T2 0.011 0.049 0.010 0.018

Department indicators

College of business 0.011 0.244 -0.061 0.102

Accounting, finance, and

business law

0.084 0.238 -0.658* 0.358

Accounting and management

information systems

0.007 0.284 -0.433 0.305

Administrative services 0.168 0.238 -0.293 0.269

Economics 0.048 0.238 -0.708** 0.073

Economics and finance 0.004 0.284 -0.889 0.570

Management 0.003 0.238 -0.121 0.135

Management and marketing -0.003 0.284 -0.184 0.135

Marketing -0.011 0.238 0.019 0.096

Elementary and special

education

0.030 0.215 0.302** 0.086

Educ. administration and

counseling

0.017 0.215 0.208** 0.098

Special education 0.020 0.215 -0.488** 0.168

Physical education 0.022 0.238 0.083 0.094

Secondary education -0.060 0.244 0.227** 0.092

Aerostudies -0.077 0.215 0.212** 0.087

Speech pathology and

audiology

0.009 0.244 -0.041 0.106

Criminal justice 0.028 0.238 -0.368 0.484

Criminal justice and

sociology

0.002 0.284 -0.396 0.300

Recreation and tourism -0.041 0.305 -0.786 0.681

Health and recreation 0.002 0.284 -0.131 0.129

Human environmental

studies

0.026 0.215 -0.184 0.113

Military science 0.023 0.305 0.123 0.122

Nursing -0.020 0.215 0.068 0.083

Social work 0.019 0.215 -0.084 0.095

Art 0.037 0.215 -0.217 0.132

English 0.000 0.215 -0.698** 0.091

Foreign languages 0.029 0.238 -0.203 0.163

Foreign language and

geography

-0.002 0.284 -0.245 0.153

History -0.006 0.215 -0.316 0.718

Communications -0.017 0.215 -0.316 0.718

Music -0.051 0.215 -0.552** 0.226

Philosophy and religion 0.086 0.238 -0.703** 0.077

Political science 0.043 0.238 -0.610 0.479

Political science, philosophy,

and religion

-0.009 0.284 -0.683 0.468

Psychology 0.047 0.215 -0.350* 0.207

102 J Prod Anal (2012) 38:95–107

123



www.manaraa.com

inefficiency (Atkinson et al. 2003b; Atkinson and Dorfman

2005a, b). To estimate the standard deviation of technical

inefficiency of each department from (12) we use the

method of Krinsky and Robb (1986) to draw 5,000 coef-

ficient vectors from a multi-variate normal distribution

with mean equal to the estimated coefficients of Eq. 12 and

the associated estimated variance–covariance vector. After

each draw we calculate the simulated value of the left-hand

side of (12) given the draw of the coefficients and the

departmental indicators and time trend. We define these

simulated values as ~lkt. For each draw we calculate ~l ¼
mink;tf~lktg and the simulated value of technical ineffi-

ciency as ~TI
kt ¼ ~lkt � ~l. The mean and sample standard

deviation of ~TI
kt

are then calculated from the 5,000 draws

and are reported in the Table 5.3

Table 6 summarizes technical inefficiency for the two

estimation approaches. Mean technical inefficiency (GMM

approach) over all departments is 0.099 in 1985–1986,

0.093 in 1995–1996, and 0.102 in 2004–2005. Given the

normalization of each output by its pooled mean, the

average hypothetical department in 1985–1986 could

increase grade points by 0.099 9 14,609 = 1,446 and

increase the information content of the grade distribution

by 0.099 9 1.25 = 0.12 if it were to reduce inefficiency

and produce on the frontier of P(x). The stochastic frontier

yields mean estimates of inefficiency of 0.044 in 1985–

1986, 0.098 in 1995–1996, and 0.132 in 2004–2005.

We define productivity change as changes in output that

occur because of efficiency change or technical change.

Efficiency change occurs when departments move toward

or away from the given frontier P(x) and technical change

refers to shifts in the frontier. Following Färe and Gross-

kopf (2004) the Luenberger productivity change indicator

equals the sum of efficiency change and technical change:

Lk;t;tþ1 ¼ D~
t

oðxkt; ykt; gÞ � D~
tþ1

o ðxktþ1; yktþ1; gÞ

þ 1

2
D~

tþ1

o ðxkt; ykt; gÞ � D~
t

oðxkt; ykt; gÞ
h

þD~
tþ1

o ðxktþ1; yktþ1; gÞ � D~
t

oðxktþ1; yktþ1; gÞ
i
ð14Þ

where efficiency change equals D~
t

oðxkt; ykt; gÞ � D~
tþ1

o ðxktþ1;

yktþ1; gÞ and the term inside the �½ 	 equals technical change.

Positive values for efficiency change indicate greater effi-

ciency and positive values for technical change indicate

technical progress. Färe and Grosskopf (2004) also showed

that when outputs are allocated efficiently and a common

directional vector is used for all departments, an aggregate

indicator of productivity change can be constructed as the

sum of the department productivity indicators. The time

trend coefficients in the inefficiency equation are insignifi-

cant for both sets of estimates, so there are no systematic

time effects on measured inefficiency. We interpret the

absence of time effects to be evidence that departments did

not experience a common technological shift to or away

from the production frontier over time. Therefore, any

productivity gains or losses are due to efficiency change.

Using the GMM estimates aggregate university inefficiency

increased from 3.267 in 1985–1986 to 3.627 in 1995–1996,

and then declined to 3.366 in 2004–2005. The stochastic

frontier estimates indicate an increase in aggregate ineffi-

ciency from 1.452 in 1985–1986 to 4.356 in 2004–2005.

For the GMM estimates, the coefficients for the

departmental indicators are not significantly different from

zero. For the stochastic estimates sixteen out of 46 coef-

ficients for departmental indicators are significantly dif-

ferent from zero. Departments in the Colleges of Business,

Liberal Arts, Science, Industrial Technology, and Univer-

sity Studies, all have a negative effect on measured inef-

ficiency, while departments in the College of Education

with the exception of Special Education, have a positive

effect on measured inefficiency.

In 1985–1986 only four departments (Music, Chemistry,

Human Environmental Studies, and Speech) had accredited

programs. That number grew to five in 1995–1996 and to

thirteen in 2004–2005. Given ĥ ¼ �0:027 (GMM) or ĥ ¼
�0:034 (stochastic), departments that achieved program

accreditation experienced a decline in inefficiency.

Our final concern is with the shadow price or tradeoff

between grade points produced and the entropy index,

(dy1/dy2). Again, we use the method of Krinsky and Robb

Table 4 continued

GMM Stochastic

Coef. Std.

Err.

Coef. Std.

Err.

Sociology and anthropology 0.002 0.238 -0.705** 0.076

Speech and theatre 0.058 0.215 -0.153 0.109

Biology -0.014 0.215 -0.250 0.155

Chemistry 0.007 0.215 -0.223 0.145

Computer science 0.065 0.215 -0.411** 0.182

Geosciences 0.048 0.215 -0.382** 0.173

Mathematics 0.033 0.215 -0.165 0.152

Physics -0.038 0.215 -0.169 0.102

Agriculture 0.006 0.215 -0.091 0.098

Industrial technology and

engineering

0.024 0.215 -0.280* 0.157

University studies -0.019 0.244 -0.451** 0.134

* p B .10

** p B .05

3 Department estimates of inefficiency and marginal rates of

transformation for the stochastic frontier estimates are available from

the authors upon request.
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to calculate the standard deviation of the shadow price for

each department. We draw 5,000 sets of coefficients of the

quadratic directional distance function from a multi-variate

normal distribution with a mean equal to the estimated

coefficients reported in Table 3 and covariance equal to the

estimated covariance matrix. The means and standard

Table 5 Departmental estimates of technical inefficiency and the shadow price ratio (std. dev.)

Department Technical inefficiency Shadow price ratio

1985–1986 1995–1996 2004–2005 1985–1986 1995–1996 2004–2005

College of business 0.088 (.187) 0.109 (.229) -1.914 (.810) -1.057 (.400)

Accounting, Finance, and Business Law 0.162 (.164) 0.161 (.179) -1.749 (612.9) -1.463 (.250)

Accounting and Management Information Systems 0.105 (.272) -1.687 (.37)

Administrative Services 0.245 (.165) 0.245 (.181) -1.279 (4.26) -1.278 (.18)

Economics 0.125 (.167) 0.125 (.184) -3.425 (.71) -2.072 (.35)

Economics and Finance 0.101 (.270) -1.812 (.29)

Management 0.080 (.166) 0.080 (.183) -104.98 (6,725) -1.567 (.20)

Management and Marketing 0.095 (.270) -1.035 (0.26)

Marketing 0.066 (.167) 0.066 (.184) -4.141 (57.62) -1.218 (.15)

Elementary and Special Education 0.108 (.144) 0.107 (.165) 0.128 (.213) -0.114 (.21) -0.865 (.35) -0.501 (.28)

Educ. Administration and Counseling 0.095 (.145) 0.094 (.168) 0.115 (.217) 0.945 (278.6) -3.252 (159.8) -0.487 (38.17)

Special Education 0.097 (.143) 0.097 (.164) 0.117 (.213) -1.161 (0.41) -0.046 (.18) -.106 (39.84)

Physical Education 0.100 (.166) 0.099 (.184) -0.502 (0.22) -0.61 (.10)

Secondary education 0.017 (.184) 0.037 (.227) -0.398 (.08) -.274 (.21)

Aerostudies 0.000 (.142) 0.000 (.164) 0.021 (.212) -1.308 (.37) -0.615 (.19) -0.761 (.25)

Speech pathology and audiology 0.086 (.191) 0.106 (.232) -1.115 (.57) -1.039 (.49)

Criminal justice 0.106 (.167) 0.105 (.184) -2.314 (.69) -1.636 (.24)

Criminal justice and sociology 0.099 (.272) -1.367 (.19)

Recreation and tourism 0.035 (.244) -1.380 (.16)

Health and recreation 0.100 (.272) -0.599 (.15)

Human environmental studies 0.103 (.141) 0.102 (.162) 0.123 (.210) -1.765 (.50) -0.576 (.11) -0.713 (.35)

Military science 0.100 (.242) -0.745 (.15)

Nursing 0.057 (.141) 0.057 (.165) 0.078 (.214) -1.413 (.79) -0.989 (.25) -0.533 (.27)

Social work 0.096 (.142) 0.096 (.163) 0.117 (.212) -1.837 (.72) -1.021 (.26) -1.170 (.21)

Art 0.115 (.144) 0.114 (.165) 0.135 (.213) -0.910 (.21) -1.008 (.16) -0.920 (.14)

English 0.078 (.142) 0.077 (.163) 0.098 (.212) -16.877 (673.1) -2.019 (.800) -2.998 (70.3)

Foreign languages 0.106 (.167) 0.106 (.183) -1.693 (.35) -1.235 (0.22)

Foreign language and geography 0.096 (.274) -0.948 (.17)

History 0.072 (.142) 0.071 (.163) 0.092 (.213) -10.927 (517.3) -1.421 (.47) -1.504 (.36)

Communications 0.060 (.144) 0.060 (.166) 0.080 (.216) -2.384 (.87) -1.274 (.34) -1.711 (7.43)

Music 0.026 (.143) 0.026 (.165) 0.046 (.213) 0.175 (4.56) 0.364 (6.00) 0.493 (10.22)

Philosophy and religion 0.163 (.163) 0.163 (.181) -1.688 (.47) -1.793 (.45)

Political science 0.120 (.164) 0.120 (.180) -3.247 (.91) -1.430 (0.22)

Political science, philosophy, and religion 0.089 (.275) -1.72 (.39)

Psychology 0.124 (.143) 0.123 (.165) 0.144 (.215) -3.637 (25.92) -1.356 (.43) -1.560 (.32)

Sociology and anthropology 0.079 (.166) 0.079 (.182) -3.533 (.75) -1.655 (.34)

Speech and theatre 0.135 (.142) 0.135 (.165) 0.155 (.213) -1.123 (.57) -1.00 (.15) -0.643 (.21)

Biology 0.063 (.142) 0.063 (.163) 0.083 (.212) -6.836 (51.06) -1.639 (7.43) -1.408 (.43)

Chemistry 0.084 (.142) 0.083 (.212) 0.104 (.142) -3.354 (7.83) -2.455 (51.58) -2.583 (1.62)

Computer science 0.143 (.142) 0.142 (.165) 0.163 (.212) -3.057 (3.01) -1.46 (.38) -1.433 (.34)

Geosciences 0.126 (.144) 0.125 (.167) 0.146 (.217) -2.446 (1.70) -1.821 (10.81) -1.569 (.39)

Mathematics 0.111 (.141) 0.110 (.164) 0.131 (.212) 19.393 (839.2) -38.38 (2,489) -2.290 (608.7)

Physics 0.039 (.138) 0.038 (.161) 0.059 (.211) -3.046 (1.04) -1.670 (.49) -1.449 (.26)

Agriculture 0.083 (.144) 0.083 (.167) 0.103 (.216) -0.993 (.18) -1.049 (.13) -0.912 (.11)

Industrial technology and engineering 0.102 (.142) 0.101 (.163) 0.122 (.213) -1.065 (.23) -1.041 (.18) -1.105 (.26)

University studies 0.058 (.187) 0.079 (.229) -1.277 (.88) -0.736 (.52)

Shadow price ratio equals the marginal rate of transformation = dy1/dy2 where y1 = grade points and y2 = entropy
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deviations of the tradeoff for these 5,000 draws for each

department and period are reported in the last three col-

umns of Table 5. The tradeoffs are for the index values of

the two outputs, where outputs have been divided by their

mean values. Table 6 summarizes the mean tradeoffs for

the two estimation methods. The GMM estimates yield a

mean tradeoff (dy1/dy2) of -5.21 in 1985–1986, -2.24 in

1995–1996, and -1.15 in 2004–2005. The stochastic

frontier estimates yield a mean tradeoff of -13.6 in 1985–

1986, -3.0 in 1995–1996, and -8.39 in 2004–2005.

Between 85 and 95% of the observations satisfy the

monotonicity conditions which correspond to strong dis-

posability of outputs and the mean tradeoffs for these

observations are also reported in Table 6.

To further illustrate the tradeoff consider a hypothetical

department that produces on the frontier of P(x) and has

700 students completing 3 h classes with 125 students

earning an A, 200 students earning B, 300 students earning

C, 50 students earning D, and 25 students earning F. The

average GPA is 2.50, the number of grade points earned is

2.5 9 700 9 3 = 5,250, and the entropy index is

E = 1.34. Holding inputs constant, if this department’s

average GPA were to increase to 3.0 the number of grade

points would increase to 6,300. This grade point change

corresponds to a change in the indexed value of

dy1 ¼ 1050
14609

¼ 0:072. Given the 1985–1986 GMM estimate

of the tradeoff in the indexed values of grade points and

entropy, we have �5:21 ¼ 0:072

dE=1:25
. Solving for dE, we

estimate the decline in the information content of the grade

distribution as dE = -0.017. Using the 2004–2005 mean

estimate of the tradeoff in indexed grade points and entropy

yields dE ¼ :072
�1:15

� 1:25 ¼ �0:078. Thus, a given increase

in grade points results in a larger loss of entropy in 2004–

2005 than it did in 1985–1986.

To further check on the tradeoff between grade points

and entropy we estimated a quadratic stochastic production

function where grade points (y1) are a single output that are

produced from the four inputs. We model the inefficiency

component as a function of time and entropy. We find that

increases in entropy have a significant positive effect on

estimated inefficiency which supports our estimates of the

tradeoff between grade points and entropy from the

directional distance function.4

The departments of Music, Special Education, Educa-

tional Administration and Counseling, and Mathematics

have a positive estimated tradeoff between grade points

and Shannon’s entropy index in various years. These

departments produce on a positively sloped portion of the

frontier of P(x). Music exhibits a positive tradeoff in all

3 years. Special Education exhibits a positive tradeoff in

1995–1996 and again in 2004–2005. Mathematics exhibits

a large positive tradeoff (19.4) in 1985–1986 but the esti-

mate has large standard deviation. For each of these

departments oQD~oðx; y; 1; 1Þ=oy2 [ 0, which violates the

standard monotonicity condition that an increase in output

should not increase inefficiency. One can think of these

departments as producing at a point such as A on the

frontier of P(x) as illustrated in Fig. 1. Although point A is

efficient for the g = (1,1) directional vector, holding grade

points constant, an increase in entropy (y2) would move the

department inside the frontier.

Table 1 reports that faculty inputs changed during the

period toward a mix with relatively more undergraduate

classes taught with non-tenure track faculty. What effect

did this changing relative mix have on the tradeoff between

grade points (y1) and entropy (y2)? The average number of

classes taught by non-tenure track faculty is 37.7 for the

pooled sample. A full-time non-tenure track faculty person

will generally teach four classes per semester. To simulate

the substitution of non-tenure track faculty for tenure track

faculty we increase the number of classes taught by

Table 6 Mean estimates of

inefficiency and the shadow

price ratio

Shadow price ratio equals the

marginal rate of

transformation = dy1/dy2 where

y1 = grade points and

y2 = entropy
a Proportion of observations

satisfying monotonicity

conditions

Estimation

method

1985–1986 1995–1996 2004–2005

D~oðx; y; 1; 1Þ GMM 0.099 (.044) 0.093 (.044) 0.102 (.032)

dy1/dy2 GMM -5.21 (18.6) -2.24 (6.0) -1.15 (0.72)

D~oðx; y; 1; 1Þ Stochastic 0.044 (0.06) 0.098 (0.14) 0.132 (0.17)

dy1/dy2 Stochastic -13.06 (65.1) -3.00 (4.51) -8.39 (19.3)

Obs. satisfying monotonicity

dy1/dy2 GMM -10.86 (25.1) -3.81 (15.1) -3.03 (9.4)

Proportiona 0.916 0.954 0.928

dy1/dy2 Stochastic -18.14 (69.5) -3.72 (2.4) -10.53 (18.6)

Proportion 0.848 0.948 0.909

4 These stochastic production frontier estimates are available upon

request.
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non-tenure track faculty by four, which corresponds to

dx1 ¼ 4=37:7 ¼ :106. Then, we solve the quadratic direc-

tional distance function for the level of tenure track faculty

(x2) that would yield the same level of the two outputs,

holding inputs x3 and x4 constant and reevaluate the

tradeoff. In Fig. 2, a hypothetical department produces

mean outputs using mean inputs with the frontier of Pð�xÞ
represented by the heavy line. The tradeoff for this

department is evaluated at point E. If the tradeoff becomes

more negative the production possibility set rotates through

E and exhibits a bias toward producing more y1 and less y2.

If the tradeoff becomes less negative, the production pos-

sibility frontier rotates through E and exhibits a bias toward

producing less y1 and more y2. In 1985–1986, 69.7% of the

departments had the simulated tradeoff become more

negative due to the substitution of non-tenure track faculty

for tenure track faculty in the classroom. In 1995–1996,

59% of the departments experienced a more negative

tradeoff, and in 2004–2005, 54.5% of the departments

experienced a more negative tradeoff. For those depart-

ments where the tradeoff becomes more negative, the

simulation is consistent with Capozza (1973) and Zange-

nehzadeh (1988) and indicates that the substitution of

non-tenure track faculty for tenure track faculty will

result in more grade points and less entropy in the grade

distribution.

4 Conclusions

Various researchers have argued that universities produce

knowledge outputs and provide screening to allow

employers to distinguish between students of different

abilities and allow students to determine their comparative

advantage. We used a directional output distance function

to model changes in grade distributions for departments at

Southeast Missouri State University. From 1985–1986 to

2004–2005 average GPAs increased at the university and

the information content of those grades as measured by

Shannon’s entropy index fell. Estimates using a stochastic

frontier and using the generalized method of moments

indicated that mean departmental inefficiency increased

during the period but that departments which achieved

program accreditation exhibited less inefficiency. Further-

more, we found evidence of Baumol’s cost disease as there

were no systematic effects of time on measured ineffi-

ciency during the 20 years period. We also estimated the

tradeoff between grade points earned and the information

content of those grades and find that on average; increases

in the number of grade points produced are associated with

declines in the entropy index of the grade distribution. We

also found that the substitution of non-tenure track faculty

for tenure track faculty in the classroom makes substitution

of grade points for entropy more likely for between 54 and

69% of departments. The empirical estimates are consistent

with what has been termed ‘‘grade inflation’’ as depart-

ments award more grade points and the information content

or screening component of education declines.

Several caveats apply to this study and suggest direc-

tions for further research. First, we were unable to obtain

specific student information on student human capital that

might be the cause of higher grades. For the university,

average ACT scores for incoming freshmen remained

constant during the last 10 years studied. If students

increasingly sorted themselves into departments with stu-

dents of similar ability, then increased student homogeneity

might be revealed as declining entropy in the grade dis-

tribution. Although average ACT scores did not rise at the

university, data on average ACT scores of students by

department were unavailable to test whether students were

sorting themselves by department. Second, although

Southeast Missouri State University has established its

primary mission as a teaching university, some of the

faculty conducts research and provides community service.

Although we partially controlled for faculty research by

identifying departments that achieved program accredita-

tion, more detailed data on research and service outputs

Entropy=y2

Grade points=y1

0 

P(x) 

g 

1

1 

A 

Fig. 1 A backward bending production possibility set, P(x)

y1=grade points 

y2=entropy 
2y
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(   )P    

E 

x

Fig. 2 Simulation of a changing input mix
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were unavailable and their impact on efficiency and pro-

ductivity change are unknown.
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